1RegQuivIntAct 5.2-4 1RegQuivIntActionFunction 5.2-5 2RegAugmentationOfQuiver 5.3-2 ARInverseTranslateOfStrip 4.5-11 ArrowsOfQuiverAlgebra 5.4-2 ARTranslateOfStrip 4.5-10 CollectedFiltered 6.1-12 CollectedLength 6.1-8 CollectedListElementwiseFunction 6.1-10 CollectedListElementwiseListValuedFunction 6.1-11 CollectedNthSyzygyOfStrip, for strips 4.5-4 CollectedSyzygyOfStrip, for strips 4.5-3 DefiningQuiverOfQuiverAlgebra 5.4-5 DeloopingLevelOfSBAlgIfAtMostN 4.6-2 DeloopingLevelOfStripIfAtMostN 4.5-15 DirectSumModuleOfListOfStrips, for a (flat) list of strips 4.5-6 DOfStrip 4.5-8 DTrOfStrip 4.5-10 ElementsOfCollectedList 6.1-4 FieldOfQuiverAlgebra 5.4-4 IndecInjectiveStripsOfSBAlg 4.3-5 IndecProjectiveStripsOfSBAlg 4.3-4 InfoSBStrips 1.5-1 Is1RegQuiver 5.2-1 Is2RegAugmentationOfQuiver 5.3-3 Is2RegQuiver 5.3-1 IsCollectedDuplicateFreeList 6.1-2 IsCollectedHomogeneousList 6.1-3 IsCollectedList 6.1-1 IsCollectedSublist 6.1-9 IsFiniteSyzygyTypeStripByNthSyzygy 4.5-13 IsIndecInjectiveStrip 4.4-4 IsIndecProjectiveStrip 4.4-3 IsStripDirectSummand 4.5-7 IsWeaklyPeriodicStripByNthSyzygy 4.5-14 IsZeroStrip 4.4-2 ModuleOfStrip 4.5-5 MultiplicityOfElementInCollectedList 6.1-5 NthSyzygyOfStrip, for strips 4.5-2 OppositeStrip 4.5-8 OriginalSBQuiverOf2RegAugmentation 5.3-4 PathBySourceAndLength 5.2-2 PathByTargetAndLength 5.2-3 PathOneArrowLongerAtSource 5.4-6 PathOneArrowLongerAtTarget 5.4-6 PathOneArrowShorterAtSource 5.4-6 PathOneArrowShorterAtTarget 5.4-6 Recollected 6.1-6 RetractionOf2RegAugmentation 5.3-5 SBStripsExampleAlgebra A.1-1 SimpleStripsOfSBAlg 4.3-1 String, for paths of length at least 2 5.4-1 Stripify, for a path of a special biserial algebra 4.2-1 SuspensionOfStrip 4.5-12 SyzygyOfStrip, for strips 4.5-1 TestInjectiveStripsUpToNthSyzygy 4.6-1 TransposeOfStrip 4.5-9 TrDOfStrip 4.5-11 TrOfStrip 4.5-9 Uncollected 6.1-7 UniserialStripsOfSBAlg 4.3-2 VectorSpaceDualOfStrip 4.5-8 VerticesOfQuiverAlgebra 5.4-3 WidthNStripsOfSBAlg 4.3-3 WidthOfStrip 4.4-1 WithoutProjectiveStrips 4.5-16
generated by GAPDoc2HTML