Goto Chapter: Top 1 2 3 4 5 6 A Bib Ind
 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 

A Example algebras
 A.1 The function
 A.2 The algebras

A Example algebras

A.1 The function

For your convenience, SBStrips comes bundled with 5 SB algebras built in. We detail these algebras in this appendix. They may be obtained by calling SBStripsExampleAlgebra (A.1-1).

A.1-1 SBStripsExampleAlgebra
‣ SBStripsExampleAlgebra( n )( function )

Arguments: n, an integer between 1 and 5 inclusive

Returns: a SB algebra

Calling this function with argument 1, 2, 3, 4 or 5 respectively returns the algebras described in subsections A.2-1, A.2-2, A.2-3, A.2-4 or A.2-5.

A.2 The algebras

Each algebra is of the form KQ/⟨ ρ ⟩, where K is the field Rationals in GAP and where Q and ρ are respectively a quiver and a set of relations. These change from example to example.

The LaTeX version of this documentation provides pictures of each quiver.

A.2-1 Algebra 1

The quiver and relations of this algebra are specified to QPA as follows.

gap> quiv := Quiver(

> 2,

> [ [ 1, 1, "a" ], [ 1, 2, "b" ], [ 2, 1, "c" ], [ 2, 2, "d" ] ]

> );

<quiver with 2 vertices and 4 arrows>
pa := PathAlgebra( Rationals, quiv );
<Rationals[<quiver with 2 vertices and 4 arrows>]>
gap> rels := [

> pa.a * pa.a, pa.b * pa.d, pa.c * pa.b, pa.d * pa.c,

> pa.c * pa.a * pa.b, (pa.d)^4,

> pa.a * pa.b * pa.c - pa.b * pa.c * pa.a

> ];

[ (1)*a^2, (1)*b*d, (1)*c*b, (1)*d*c, (1)*c*a*b,
  (1)*d^4, (1)*a*b*c+(-1)*b*c*a ]

The relations of this algebra are chosen so that the nonzero paths of length 2 are: a*b, b*c, c*a, d*d.

The simple module associated to vertex v2 has infinite syzygy type.

A.2-2 Algebra 2

The quiver and relations of this algebra are specified to QPA as follows.

gap> quiv := Quiver(

> 3,

> [ [ 1, 2, "a" ], [ 2, 3, "b" ], [ 3, 1, "c" ] ]

> );

<quiver with 3 vertices and 3 arrows>
gap> pa := PathAlgebra( Rationals, quiv );

<Rationals[<quiver with 3 vertices and 3 arrows>]>
gap> rels := NthPowerOfArrowIdeal( pa, 4 );

[ (1)*a*b*c*a, (1)*b*c*a*b, (1)*c*a*b*c ]

(In other words, this quiver is the 3-cycle quiver, and the relations are the paths of length 4.) The nonzero paths of length 2 are: a*b, b*c, c*a.

This algebra is a Nakayama algebra, and so has finite representation type. A fortiori, it is syzygy-finite.

A.2-3 Algebra 3

The quiver and relations of this algebra are specified to QPA as follows.

gap> quiv := Quiver(

> 4,

> [ [1,2,"a"], [2,3,"b"], [3,4,"c"], [4,1,"d"], [4,4,"e"], [1,2,"f"],

>   [2,3,"g"], [3,1,"h"] ]

> );

<quiver with 4 vertices and 8 arrows>
gap> pa := PathAlgebra( Rationals, quiv );

<Rationals[<quiver with 4 vertices and 8 arrows>]>
gap> rels := [

> pa.a * pa.g, pa.b * pa.h, pa.c * pa.e, pa.d * pa.f,

> pa.e * pa.d, pa.f * pa.b, pa.g * pa.c, pa.h * pa.a,

> pa.a * pa.b * pa.c * pa.d * pa.a - ( pa.f * pa.g * pa.h )^2 * pa.f,

> pa.d * pa.a * pa.b * pa.c - ( pa.e )^3,

> pa.c * pa.d * pa.a * pa.b * pa.c,

> ( pa.h * pa.f * pa.g )^2 * pa.h

> ];

[ (1)*a*g, (1)*b*h, (1)*c*e, (1)*d*f, (1)*e*d, (1)*f*b, (1)*g*c,
  (1)*h*a, (1)*a*b*c*d*a+(-1)*f*g*h*f*g*h*f, (-1)*e^3+(1)*d*a*b*c,
  (1)*c*d*a*b*c, (1)*h*f*g*h*f*g*h ]

The relations of this algebra are chosen so that the nonzero paths of length 2 are: a*b, b*c, c*d, d*a, e*e, f*g, g*h and h*f.

A.2-4 Algebra 4

The quiver and relations of this algebra are specified to QPA as follows.

gap> quiv := Quiver(

> 8,

> [ [ 1, 1, "a" ], [ 1, 2, "b" ], [ 2, 2, "c" ], [ 2, 3, "d" ],

>   [ 3, 4, "e" ], [ 4, 3, "f" ], [ 3, 4, "g" ], [ 4, 5, "h" ],

>   [ 5, 6, "i" ], [ 6, 5, "j" ], [ 5, 7, "k" ], [ 7, 6, "l" ],

>   [ 6, 7, "m" ], [ 7, 8, "n" ], [ 8, 8, "o" ], [ 8, 1, "p" ] ]

> );

<quiver with 8 vertices and 16 arrows>
gap> pa := PathAlgebra( Rationals, quiv );

<Rationals[<quiver with 8 vertices and 16 arrows>]>
gap> rels := [

> pa.a * pa.a, pa.b * pa.d, pa.c * pa.c, pa.d * pa.g, pa.e * pa.h,

> pa.f * pa.e, pa.g * pa.f, pa.h * pa.k, pa.i * pa.m, pa.j * pa.i,

> pa.k * pa.n, pa.l * pa.j,

> pa.m * pa.l, pa.n * pa.p, pa.o * pa.o, pa.p * pa.b,

> pa.a * pa.b * pa.c * pa.d,

> pa.e * pa.f * pa.g * pa.h,

> pa.g * pa.h * pa.i * pa.j * pa.k,

> pa.c * pa.d * pa.e - pa.d * pa.e * pa.f * pa.g,

> pa.f * pa.g * pa.h * pa.i - pa.h * pa.i * pa.j * pa.k * pa.l,

> pa.j * pa.k * pa.l * pa.m * pa.n - pa.m * pa.n * pa.o,

> pa.o * pa.p * pa.a * pa.b - pa.p * pa.a * pa.b * pa.c

> ];

The relations of this algebra are chosen so that the nonzero paths of length 2 are: a*b, b*c, c*d, d*e, e*f, f*g, g*h, h*i, i*j, j*k, k*l, l*m, m*n, n*o, o*p and p*a.

A.2-5 Algebra 5

The quiver and relations of this algebra are specified to QPA as follows.

gap> quiv := Quiver(

> 4,

> [ [ 1, 2, "a" ], [ 2, 3, "b" ], [ 3, 4, "c" ], [ 4, 1, "d" ],

>   [ 1, 2, "e" ], [ 2, 3, "f" ], [ 3, 1, "g" ], [ 4, 4, "h" ] ]

> );

<quiver with 4 vertices and 8 arrows>
gap> pa := PathAlgebra( Rationals, quiv5 );

<Rationals[<quiver with 4 vertices and 8 arrows>]>
gap> rels := [

> pa.a * pa.f, pa.b * pa.g, pa.c * pa.h, pa.d * pa.e, pa.e * pa.b,

> pa.f * pa.c, pa.g * pa.a, pa.h * pa.d,

> pa.b * pa.c * pa.d * pa.a * pa.b * pa.c,

> pa.d * pa.a * pa.b * pa.c * pa.d * pa.a,

> ( pa.h )^6,

> pa.a * pa.b * pa.c * pa.d * pa.a * pa.b -

>     pa.e * pa.f * pa.g * pa.e * pa.f * pa.g * pa.e * pa.f,

> pa.c * pa.d * pa.a * pa.b * pa.c * pa.d -

>     pa.g * pa.e * pa.f * pa.g * pa.e * pa.f * pa.g

> ];

[ (1)*a*f, (1)*b*g, (1)*c*h, (1)*d*e, (1)*e*b, (1)*f*c, (1)*g*a,
  (1)*h*d, (1)*b*c*d*a*b*c, (1)*d*a*b*c*d*a, (1)*h^6,
  (1)*a*b*c*d*a*b+(-1)*e*f*g*e*f*g*e*f,
  (1)*c*d*a*b*c*d+(-1)*g*e*f*g*e*f*g ]

The relations of this algebra are chosen so that the nonzero paths of length 2 are: a*b, b*c, c*d, d*a, e*f, f*g, g*e, h*h.

 [Top of Book]  [Contents]   [Previous Chapter]   [Next Chapter] 
Goto Chapter: Top 1 2 3 4 5 6 A Bib Ind

generated by GAPDoc2HTML